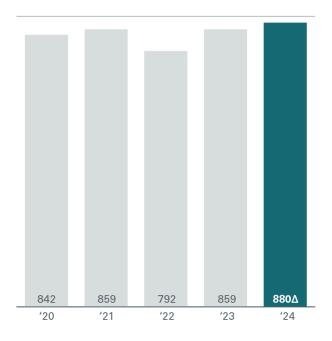
Water

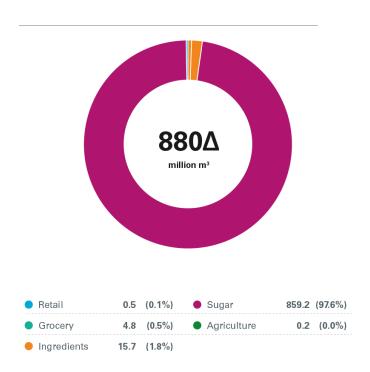
Our businesses aim to reduce the amount of water they abstract for their own operations, reuse process water as much as possible, and return treated wastewater to the environment after ensuring it meets or exceeds local and national water regulations and standards.

Solar irrigation project, Azucarera, Spain

In 2023/24, businesses across the Group collectively abstracted 880 million m³ of water for use in their operations, a 2% increase compared with last year. While this aligns with the increase in production tonnage, the main driver was increased irrigation demand due to drought impacting our sugar businesses in Africa. ABF Sugar is responsible for 98% of the Group's total water use. Water is used carefully and extensively throughout the sugar manufacturing operation, from the processing stage to extract and refine the sugar, to generating steam in the boilers, through to cleaning the equipment. A significant portion of the water abstracted across ABF is used for crop irrigation by our sugar cane sites in our African operations.


ABF Sugar has set a 2030 commitment to reduce its water footprint by 30% from its 2018 baseline. In 2023/24, the business has focused its activities in two main areas: improving the accuracy of water measurement and investing in irrigation efficiency so that every drop of water can reach the crop.

Of the water used by our businesses, 97% comes from surface water, such as rivers and lakes, as well as man-made dams. Our businesses' sites are regulated by water permits or licences, and they withdraw water within their agreed limits. In 2023/24, across the Group 24% of the water abstracted was reused before being returned to the environment. This is both a cost and resource efficient way of managing water. Our sites reuse the water for irrigation, land spreading, cleaning machinery, and horticultural purposes.


To identify and manage potential risks to our operations in areas facing water scarcity, we have carried out a high-level water risk assessment for our Group operations using internationally recognised methodologies to identify sites operating in water-stressed areas. We provide a more detailed picture of water-stress risk in our CDP submission.

Total water abstracted

(million m³)

Total water abstracted 2024, by segment (million m³)

Water treatment

Our businesses' sites return as much water as possible to the environment by treating the wastewater on-site or by using municipal treatment plants.

Water treatment at AB Mauri is a priority for the Group. The business carefully assesses water risks affecting each of its sites, and manages any water returned to the environment as safely as possible and to meet legal requirements. To support this approach, AB Mauri has built significant in-house capability in water use and wastewater management. Since 2010, it has invested \$120m in wastewater treatment. Many of its production facilities have complex on-site effluent treatment plants that include biological processes, evaporators and reverse osmosis membrane systems that can produce reusable water and useful co-products. The selection of

Wastewater treatment at AB Mauri Maya's yeast plant in Bandrima, Turkey

technologies addresses the local aquatic sensitivities and water quality objectives. As a minimum, sites equalise their flow so as not to disrupt any downstream municipal processes.

Water in our supply chain

Water is an essential input for clothing and food production. It is used throughout the Group's value chain, at our operations, by independent farmers and in suppliers' processing facilities. Ensuring efficient water use in agriculture has become increasingly crucial, especially under changing climate conditions.

Some of the farm management standards supported by our businesses incorporate water management strategies which aim to address this challenge. For instance, Westmill aims to promote the standards of the Sustainable Rice Platform (SRP) Standard, the Primark Cotton Project trains farmers to reduce water use, and ABF Sugar, through the use of the SAI Platform FSA 3.0 tool, works closely with its growers to enhance water efficiency.

In 2023/24, Primark has developed a 2030 Water Impact and Stewardship Strategy. This strategy aims to enhance water management practices, reduce water footprints, and mitigate adverse effects on hydrological systems, ecosystems, and human health. The strategy includes mapping basin-level risks and evaluating operational water dependencies to identify suppliers and basins most vulnerable to water-related challenge.

 Δ EY has provided limited independent assurance over the 2024 metrics. <u>See our data page</u> for the assurance statement.

Water - Retail

Water is a critical natural resource within the fashion industry, from the irrigation of cotton fields to the dyeing and finishing of fabrics and materials.

A water efficiency project in Narayanganj, Bangladesh, supported by Primark

Primark joined the <u>Alliance for Water Stewardship</u> (AWS) as a founding member in 2021, supporting its approach to improve the use of water resources and its commitment to adopt and promote a universal water stewardship framework, the AWS Standard. The AWS sets out five key outcomes associated with good water stewardship: sustainable water balance, good water quality status, healthy status of freshwater ecosystems, improved water governance, and Water Sanitation and Hygiene (WASH) for all.

To support these outcomes, Primark has developed a 2030 Water Impact and Stewardship Strategy. This strategy aims to enhance water management practices, reduce product water footprints, and mitigate adverse effects on hydrological systems, ecosystems and human health. The strategy includes mapping basin-level risks and evaluating operational water dependencies to identify suppliers and basins most vulnerable to water-related challenges. Primark recognises that climate change, increasing global demand for freshwater, and the rising levels of global pollution are putting additional pressure on already scarce water resources. Water quality and quantity risks are a key focus, and Primark aims to minimise these risks by prioritising basins with the greatest opportunities for impact.

The strategy includes three target areas for water management: product-based, site-based and catchment level.

For the product-based target area, which considers the entire value chain from cotton cultivation to consumer use, Primark aims to reduce the water footprint of products sold in the UK by 30% by 2030, in line with its commitment to WRAP's Textiles 2030 initiative.

For the site-based target area, in 2024, Primark conducted a comprehensive water footprint assessment of its value chain, which will be updated annually. The assessment identified wet processing factories and cotton cultivation stages as the most dependent on freshwater. The assessment also uncovered the water footprint of the different materials which makes up its products. With this information, Primark aims to develop internal measures to further drive the adoption of more sustainable materials.

Along with suppliers in stressed sourcing basins, Primark is collaborating with other water users, including brands and governing bodies, to address shared water challenges. Primark identifies stressed basins using tools such as <u>WWF's Water Risk Filter</u> and <u>WRI Aqueduct's screening tool</u>, which aggregate water availability, quality and access risks.

Primark has expanded resource efficiency programmes across China, India and Bangladesh. In Bangladesh, 29 factories have identified more than 2 million m³ of water per year of potential savings, resulting in an average 17% reduction in water use across those factories. The insights gained will guide a broader rollout.

Primark also launched a water recycling project this year through the Sustainable Manufacturing and Environmental Pollution (SMEP) programme in Bangladesh, which will introduce innovative technologies to reduce micropollutants and enable wastewater recycling. This project takes a holistic approach to the supply chain, examining how wastewater recycling can be integrated within a factory's broader resource management (energy, water and chemicals). Primark will work with local stakeholders in both the public and private sectors to share project outcomes and promote improvements in local water governance.

On the catchment level target area, Primark is committed to support catchment-scale projects in priority basins where water challenges pose the greatest risk to people and nature. Beyond reducing its own water footprint, Primark is involved in broader water stewardship initiatives to address shared challenges. The membership of AWS is a key part of this approach, incorporating community engagement, biodiversity and governance considerations, to address water challenges holistically.

To ensure the business is contributing towards basin level resilience, Primark has aligned its priority basins within its supply chains with those identified by the UN's Water Resilience Coalition (WRC), which has identified the world's 100 priority basins for collective action, enabling the business to collaborate and scale impact with other water dependent stakeholders.

Case study - Primark

Partnering with Oxford University to advance water quality monitoring

OMB scientist testing wastewater samples, sent from Primark supply chain factories in Dhaka, to investigate linkages between water quality and ecotoxicity through OMB's unique biosensor technology

Identifying the influence of various water users on water quality issues within the environment is complex. Interaction between industrial and domestic water users with the local hydrology, in addition to the existence of numerous water quality indicators, makes it difficult to link site level action with outcomes and impacts within a catchment.

To better understand this link, Primark supports a project with <u>Oxford Molecular Biosensors (OMB)</u> which is part of Oxford University. They have developed a biosensor to measure water quality using one aggregate indicator, ecotoxicity. Ecotoxicity is a measurement of the toxicity of aggregate constituents within water and their impact on freshwater species.

OMB is also the developer of a unique catchment water quality monitoring tool, Integrated Catchment model (INCA). This unique model allows for the quantification of the impact of various sources of pollution within the wider environment. The aim, through collaboration with Primark and eventually other stakeholders, is to combine the biosensor and INCA tools to begin to quantify the impact of site-level interventions on the wider environment, better linking water quality with outcomes to nature and to people.

Case study - Primark

Primark working with suppliers to tackle micropollutants

Water filtration equipment ready to ship to Bangladesh for Primark's innovative wastewater recycling and micro pollution removal project

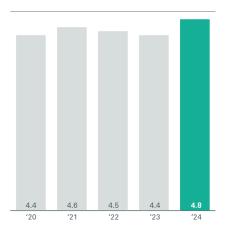
In 2023/24, Primark supported a collaboration between The Microfibre Consortium and the Zero Discharge of Hazardous Chemicals (ZDHC) Foundation, as part of a wider task force to link suspended solids in wastewater with the concentration of microfibres. Importantly, this link enables Primark to better recommend effluent treatment plant processes to our suppliers to help with the removal of microfibres.

Primark is conducting research on how interventions and membrane technologies, such as those used in the Sustainable Manufacturing and Environmental Pollution project to recycle water, can contribute towards microfibre removal. It is working to understand the most appropriate pore size for membranes when considering the increased energy required as pore sizes decrease, and removal rates increase. Next year, it will incorporate these learnings as part of a broader water quality and wastewater recovery strategy.

Water - Grocery

Water is a key component in some of our Grocery businesses' manufacturing processes.

Ageing barrels for balsamic vinegar of Modena at Acetum's factory in Cavezzo, Italy


Water abstraction across our Grocery businesses increased by 9% from 4.43 million m³ in 2023 to 4.80 million m³ in 2024. This was primarily driven by George Weston Foods, which accounts for 46% of the Grocery segment's total water abstracted in 2024. George Weston Foods increased its water consumption by 14% from 1.9 million m³ in 2023 to 2.2 million m³ in 2024 as a result of an increase in production output as well as improvements in reporting accuracy.

Our Grocery businesses recycled 4% of the water entering their sites in 2024, which also contributed to a reduction in water abstracted.

In the UK, water abstraction across the Grocery Group facilities continues to fall and has reduced by 19% since 2015. Although water is a key ingredient for many of its products, ensuring water usage in non-ingredient applications is minimised has helped achieve this reduction. Within Grocery Group, Acetum, Allied Mills, Westmill Foods and Speedibake all decreased their water use in 2024.

Total water abstracted

(million m³)

Grocery Group

As part of the Courtauld Commitment 2030, all Grocery Group UK businesses have signed up to the WRAP water roadmap. This focuses on water use in the supply chain and includes an overall target that 50% of fresh food is sourced from areas with sustainable water management.

In 2024, Grocery Group businesses in the UK have focused on utilising the WWF water risk tool to assess their high volume ingredients, with the aim of following the WRAP stewardship guidance and reducing water risk in the supply chain. This is in addition to the sustainable spice and rice projects in their supply chains which continue to deliver significant water reduction benefits.

Water - Ingredients

Water is vital to our Ingredients businesses, in particular AB Mauri which relies on water as the medium in which yeast cells grow and reproduce.

A wastewater treatment plant at SPI Pharma's manufacturing site in Lewes, Delaware, United States

Our Ingredients businesses aim to minimise their impact on local water resources, communities and biodiversity, by using water efficiently and returning it safely to the environment after use.

Water abstracted across the Ingredients segment decreased by 8% in 2024, reducing from 17 million m³ in 2023, to 16 million m³. Of the amount abstracted in the year, 80% is attributed to AB Mauri which continues to reduce its need for water through targeted water management initiatives.

The amount of wastewater generated across the Ingredients segment also decreased in 2024 by 4% compared with 2023, reducing from 14.3 million m³ to 13.7 million m³. While contributing only 19% to the segment's total wastewater in 2024, ABFI has decreased the amount of wastewater generated by 24% compared with the previous year, which has led to the segment's overall reduction.

AB Mauri

AB Mauri's total water abstraction in 2024 was 13 million m³. AB Mauri's water strategy focuses on reducing water use and reusing where possible, and recycling after treatment where feasible. The business assesses water risks affecting each site and ensures that any water returned to the environment is managed as safely as possible.

To support this strategy, the division has built significant in-house capabilities in water usage and wastewater management formalised into guidance documents, reporting tools, procedures and standards that facilitate the management of all water-related matters. A Global Water Champion works with a group of regional water leads to implement this strategy.

Since 2010, AB Mauri has invested \$120m in wastewater treatment. Many of its production facilities have complex on-site effluent treatment plants that include biological processes, evaporators and reverse osmosis membrane systems that can produce reusable water and useful co-products. The selection of technologies addresses the local aquatic sensitivities and water quality objectives. At a minimum, sites design their treatment systems so as not to disrupt any downstream municipal processes.


The division is also focused on reducing its water intensity ratio (the quantity of water consumed per tonne of product, excluding by-products) over time. Initiatives include large, capital-intensive projects such as the installation of new cooling towers in the Tucuman yeast factory (see the case study below).

It has also completed many smaller, incremental improvement projects, such as at its yeast site in Chiplun, India, which saved 5% of the site's total annual water consumption through recycling water after treatment with membranes. This combination of approaches has enabled AB Mauri to reduce its water intensity ratio by more than 25% since 2017/18.

Finally, AB Mauri has developed its own tool to help its sites identify current water supply risks and those calculated in 2030 and 2050. The tool makes use of data from the WWF Water Risk Filter and Aqueduct, as well as the sites' own experience and knowledge of local mitigation and adaptation measures to assess overall risk levels. The tool considers water supply risk in terms of water stress risk, regulatory risk, reputational risk and water quality risk.

Total water abstracted

(million m³)

The risk assessment is combined with a forecast for water use, incorporating any projects the site has that will reduce or increase water use. The tool is completed annually at all sites with material water use. The results are reviewed and presented to AB Mauri's global Manufacturing Leadership Team, Environment Leadership Team and Global ESG Steering Group.

AB Mauri has also developed a tool to help sites identify their flooding risk up to 2050. The tool makes use of data from the <u>WWF Water Risk Filter</u> and <u>Aqueduct</u>, as well as the sites' own experience and knowledge of local mitigation and adaptation measures to assess overall risk levels and identify candidates for further assessment.

ABFI

ABFI uses benchmarks to identify opportunities for improvement and to encourage its teams to find ways to increase efficiency, such as by recirculating water.

Additionally, effluent wastewater is treated before discharge and ABFI monitors the oxygen demand of wastewater effluent across its operations. This information and regular monitoring are fundamental to ensure its operations remain compliant with regulation.

ABFI's ABITEC Corp Janesville site has invested in a distributed control system to reduce the water needed to cool its chemical reactors. It works by controlling the contact time to allow more heat to be absorbed by the water.

Case study - AB Mauri

Cooling towers reducing water abstraction at Tucuman

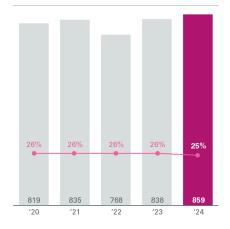
AB Mauri's yeast site in Tucuman, Argentina

Cooling requires significant water use in yeast manufacturing. At AB Mauri's yeast site in Tucuman, Argentina, river water was previously used to cool equipment before being returned to the river, a practice known as 'once-through cooling'. This practice meant the site was reliant on river flows that had become increasingly unreliable and required treatment before use, which incurred additional costs.

In 2018, the site decided to invest in eight cooling towers to replace the use of once-through cooling, dramatically reducing water abstraction, increasing the resilience of the site and reducing the impact on the environment. The site also reduced its net energy requirement as the energy required for cooling towers was offset by reduced energy for river water pumping. Over this time, the site has also installed six cooling towers which have reduced the site's surface water abstraction by more than 60% compared with the baseline in 2017/18. A further two cooling towers will come online in 2025, eliminating the use of surface water.

Water - Sugar

ABF Sugar recognises the critical importance of water for its crop growing activity and factory operations, making water management a key focus area.


Solar irrigation project, Azucarera, Spain

ABF Sugar has set a 2030 commitment to reduce its water footprint by 30% from its 2018 baseline. Each business has set a clear target to reduce water usage as part of its environmental plan in their five-year strategies.

In 2023/24, the division focused its activities in two main areas, improving the accuracy of water measurement and investing in irrigation efficiency so that every drop of water can reach the crop. ABF Sugar increased water abstraction in 2023/24 by 3% compared with the prior year and by 7% against its 2018 baseline. This rise is driven by an increase in irrigation demand mainly due to drought impacting our sugar businesses in Africa. In 2023/24, the division reduced water abstraction per tonne of product by 1%, which indicates an improvement in water-use efficiency, and reused 25% of the total abstracted water before it was returned to the environment.

Total water abstracted & percentage of total water reused

(million m³)

Water use within our sugar businesses in Africa

ABF Sugar's primary use of water is for growing crops at its sugar estates in Africa. These businesses have a long-standing focus on optimising water use and investing in improved irrigation systems across their estates. Water management programmes are implemented across their operations in Zambia, Malawi, and Eswatini, which collectively account for 92% of the water abstracted for irrigation.

Every business has an action plan aimed at improving outcomes in three areas: reducing water loss, increasing water productivity and fostering a culture of expertise in more sustainable water use. To reduce water consumption, the businesses focus on reducing bulk water losses, reducing infield water losses and improving irrigation schedules.

To improve water efficiency and get more water to the crop, the businesses are investing in advanced irrigation systems. For example, at the Nakambala estate, they are replacing furrow irrigation with subsurface drip irrigation alongside Synergistic Surface Irrigation and Drainage (SSID), a new system which combines irrigation methodologies to improve crop yield and soil health.

Water productivity has also been a priority, with a focus on irrigation scheduling, metering and in-field technologies. From the baseline year of 2018 to 2023/24, some African sugar sites have successfully increased cane yields while reducing the amount of water used per tonne of product. To promote a culture of sustainable water management, the businesses have also launched training sessions and workshops on irrigation scheduling.

Water use across other ABF Sugar businesses

ABF Sugar's Spanish business, Azucarera, is leveraging innovative and smart technology with its 80 watering systems. It is collaborating with AIMCRA to reduce irrigation water usage and promote energy efficiency in sugar beet production. Through this collaboration, it offers advice to growers on irrigation to help them cut costs, improve efficiency and reduce carbon emissions.

Water efficiency is also a priority for British Sugar, as most of its growers are based in the beet-growing areas of East Anglia, which face water shortage challenges. The business works closely with growers, external organisations and the National Farmers Union Sugar Board to manage on-site operations and minimise water usage and reduce water pollution throughout the supply chain.

In the UK, all of British Sugar's current farmers are RedTractor assured, meaning they are regularly assessed and audited against a set of environmental measures and practices, including limiting excessive water use and prohibiting water pollution. The British Beet Research Organisation (BBRO) also provides guidance on soil health that directly impacts water health. All the growers for British Sugar are required to adhere to DEFRA's farming rules for water, which were introduced in 2018 to reduce and prevent diffuse water pollution from agricultural sources.

As a founding member of the Sustainable Agriculture Initiative (SAI) platform, British Sugar is also fully engaged on the deployment of the SAI Regenerating Together programme and its efforts regarding water resources.

Case study - Ubombo Sugar

Water irrigation projects creating improved yields and further resilience in Zambia and Eswatini

A sugar cane irrigation system at the Ubombo estate in Eswatini

Growing high yielding and resilient sugar cane is a major focus for our sugar businesses in Africa and efficient use of water is essential to achieving this goal. We are investing in more precise irrigation systems that maximise efficiency and help sustain the agricultural systems on which our businesses rely.

Specifically, we are currently focused on more efficient irrigation systems at our Nakambala estate and Nanga Farms in Zambia. At Nakambala, we are replacing traditional furrow irrigation with sub-surface drip irrigation and 'synergistic surface irrigation and drainage', a new system that will improve crop yield and soil health. We are actively considering further investments in these systems at Nanga Farms. Together with the use of precision agriculture technologies, we can concentrate more on areas of the field where the crop experiences weather stress and adapt our field layouts so that every stick of cane receives the precise amount of water it needs.

The projects are driving better yields while improving water use efficiency and providing greater weather resilience. Over the seven-year period of implementation, the investment at the two estates is approximately \$20m. Our focus on water also benefits the communities in which we operate. In Eswatini, we are making significant strides towards reducing local poverty by partnering with the Eswatini Water and Agricultural Development Enterprise, a government agency, to support the Lower Usuthu Smallholder Irrigation Project which is developing 11,500 hectares of smallholder irrigation. Some 2,300 households are expected to benefit directly from the project which is also establishing 28 farmer companies to cultivate cane and other crops, providing greater food security and nutrition for local communities.

Our Ubombo Sugar business has invested significantly to optimise factory capacity to enable the processing of the additional cane that will be produced as a result.

Case study - British Sugar

Working to improve water quality at British Sugar's factories

New water treatment facility, Newark, UK

British Sugar treats all of the water it uses on-site before discharging it into the environment. The business complies with all environmental permit requirements, ensuring that all discharged water meets specific treated water standards.

Since 2022, British Sugar has invested over £20m to further improve the quality of water discharged from its sites. This includes the construction of new water treatment plants in Newark and Cantley, as well as the upgrading of existing facilities at other locations.

British Sugar's sites return more water into the catchment area than they consume. However, the business is currently evaluating the possibility of achieving water self-sufficiency at two of its sites, which would reduce the need to extract water from rivers or boreholes.